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Chad M. Spoouer and William A. Gardner 
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Abstract 

It is shown that cochannel interference removal from digital quadrature-amplitude-modulated 
signals without the introduction of signal distortion can be accomplished by using linear-plus- 
cubic frequency-shift filtering.  The theory of higher-order cyclostationary signals is used to 
explain how this can be done, and the results of simulations that quantify the performance of 
the method are presented. 

1    Introduction 
One of the fundamental difficulties encountered in communication system design is the problem 
of cochannel interference. When the interfering signal is narrowband with respect to the signal of 
interest (SOI), or overlaps the SOI only over a small portion of its allotted band of frequencies, 
excision methods (i.e., narrowband filtering) can sometimes be used to mitigate the interferer's 
effects while introducing a level of distortion into the SOI that is either tolerable or correctable by 
other means. However, when this distortion is unacceptable, as it usually is when the interfering 
signal overlaps the SOI over a sufficiently large portion of its allotted band, other means of interfer- 
ence mitigation must be sought. This difficulty arises because the communication signals involved 
are usually modeled as stationary stochastic processes, for which linear time-invariant (LTI) fil- 
tering is appropriate and, in some cases, optimal from a minimum-mean-squared-error viewpoint. 
Nevertheless, LTI filtering cannot separate spectrally overlapping signals. 

Over the past several years it has been established that many communication signals are more 
appropriately modeled as cyclostationary stochastic processes in the sense that superior signal pro- 
cessing methods, such as detectors and estimators, can be derived from this model [1, 2]. These 
methods are superior in that they can deliver more accurate estimates for the same amount of data, 
and in some cases they can solve problems that cannot be solved by using the simpler stationary 
model. A signal x(t) is called second-order cyclostationary if there exists a stable time-invariant 
quadratic transformation such that the output of the transformation with x(t) at the input con- 
tains at least one finite-strength additive sine-wave component with nonzero frequency a [1]. This 
property of cyclostationary signals is called the sine-wave regeneration property. Equivalently, a 
signal is second-order cyclostationary if it contains pairs of spectral components—separated in fre- 
quency by a nonzero amount a—that are temporally correlated. This property of cyclostationary 
signals is called the spectral correlation property. The frequency separations and the frequencies 
of the generated sine waves are specified by the same set of numbers {a}, which are called cycle 
frequencies. 

In particular, it has recently been demonstrated that by using linear periodically (or almost 
periodically) time-variant filtering, cochannel interference can, in principle, be completely removed 
from a second-order cyclostationary signal—without introducing any distortion into the signal [3]. A 
linear (almost) periodically time-variant system is also referred to as a FREquency-SHift (FRESH) 
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filter because the system output can be represented as the sum of filtered and frequency-shifted 
versions of the input. For signals that do not exhibit second-order cyclostationarity (SOCS), linear 
FRESH filtering degenerates to LTI filtering. 

With the increasing use of the radio spectrum, there has been a corresponding increase in the 
use of spectrally efficient signals (e.g., partial response and some digital quadrature-amplitude- 
modulated [QAM] signals). These signals exhibit weak or no SOCS, and therefore linear FREbH 

filtering provides little or no benefit over LTI filtering. However, these signals do exhibit higher- 
order cyclostationarity (HOCS) [4, 5], and this property can be exploited to yield a generalization of 
linear FRESH filtering to nonlinear FRESH filtering. In this paper, we propose a nonlinear method 
of removing cochannel interference from signals that do not exhibit SOCS. The method consists of 
linearly and cubically transforming the received data, frequency shifting the results, and summing 
to yield an estimate of the SOI: linear-plus-cubic (LPC) FRESH filtering. 

The remainder of the paper is organized as follows. In Section 2 we provide the mathematical 
background on HOCS that is necessary to understand the LPC method, in Section 3 we describe 
the method, and in Section 4 we present results of a computer study of the method that give 
an indication of its potential. Finally, in Section 5 we draw conclusions and outline appropriate 

follow-on research problems. 

2     Cyclostationarity 
The theory of cyclostationary signals can be developed in either the stochastic-process framework 
[2, 6] or the time-series framework [1, 4, 6, 7]. We use the latter here. Consider a time-series x(t) 
defined for all time t. We introduce some quantities that are nonlinear transformations of this 
time-series These quantities, whose mathematical existence is assumed, are obtained by using the 
multiple-sine-wave-extraction operator £<«> {•}, which extracts the almost periodic component of 
its argument (and is analogous to the stochastic expectation operation) [2, 7]. That is, E^a {■} 
extracts the sum of all finite-strength additive sine waves present in its argument. 

The nth-order temporal moment function (TMF) for x(t) is defined by 

*,(*,£)„ 4   #«>(n *<•>'(*+ r,-)] =£K(T)ne-<2- (1) 

where (*),■ denotes the optional conjugation of the factor x(t + rj). The complex-valued strength of 
each of the sine-wave components of the TMF is called a nth-order cyclic temporal moment function, 

and can be computed in the following way 

K{T)n = lim  1   r ff *<•>'(* + r,)e-^ dt = (fix"'« 4- rs)^A , (2) 
xv-y T-ooT J-T/2 j=l \j=l / 

where the angle brackets (•) are used to denote the infinite-time-averaging operation. 
A signal x(t) for which there is at least one nonzero value of a for which Ä£(r)„ ^ 0 in the sum 

in (1) are said to exhibit nth-order cyclostationarity. For n > 2, x(t) is said to exhibit higher-order 
cyclostationarity. An interesting case is that in which x(t) exhibits cyclostationarity for order n 
but not for any order smaller than n. Examples of this kind of signal for n = 4 are members 
of the class of partial-response signals [8]. Other interesting signals are those that exhibit weak 
cyclostationarity for orders less than n, but strong cyclostationarity for order n. Examples of these 
signals for n = 4 are bandwidth-efficient digital QAM signals with excess bandwidth on the order 

of 10% (or less). 



In the special case of n = 2, n = r/2, and r2 = -r/2, the CTMF coincides with the cyclic 
autocorrelation function, which is typically denoted by J£(T) [1]. Linear FRESH filtering can 
be understood by interpreting the cyclic autocorrelation as the cross correlation between a signal 
s(t + r/2) and a time- and frequency-shifted version of itself s(t - T/2)el27rat- 

ä?(T) = (s(t + r/2) [s(t - r/2)ei2*at]*) 

Let x{t) = s{t) + m(t), where s{t) is the SOI and m(t) is the SNOI plus noise.  The idea is to 
estimate the SOI s(t) in the data x(t) by using both time- and frequency-shifted versions of^t). 

The motivation for cubic FRESH filtering is understood by interpreting the fourth-order Gl M* 
as the cross correlation between a signal s(t + Ty) and a cubically transformed and frequency-shifted 

version of itself TIj=2 s(* + Tj)e ,i2irat. 

Ä?(z)4 = (*(* + r1) 
J2nat 

\ [j=2 

The idea is to estimate the SOI s(t) in the data x(t) by using frequency-shifted cubically transformed 

versions of x(t). 

3    Linear-Plus-Cubic Frequency-Shift Filtering 

For a real-valued input signal x(t) the output y(t) of an LPC system is given by the following 

relation 

y(*) = Efr^r^'-T)e,'2,r,"dT 

+ E f r 9a(z)x(t - Tl)x(t - T2)x(t - TZ)e
i2*at dr r = [ri r2 r3]. (3) 

The sum over the frequency parameters {rj} describes a linear FRESH filter, the sum over the 
frequency parameters {a} describes a cubic FRESH filter, and together they describe a linear-plus- 

cubic FRESH filter. 
The problem of finding the. functions {&,(•)} and {&,(•)} such that y(t) is the nummum-mean- 

squared-error estimate of s(t), 
s(t)\2) min  (\y(t) 

■V'9a}   V {h 

results in a set of multidimensional integral equations that are difficult to solve even for specific 
simple models for s(t) and m{t). However, the form of the integral equations does allow specification 
of the parameter sets {??} and {a}, which are not limited to the second- and fourth-order cycle 
frequencies of x(t), respectively (cf. [3] for the case of linear FRESH filters). In fact, both sets of 
parameters are specified by the same frequencies, which are all integer-coefficient linear combinations 
of the set of second-, fourth-, and sixth-order cycle frequencies for x(t), which itself consists of the 
cycle frequencies for s(t), i(t), and n(t), for orders 2, 4, and 6, as well as the sums and differences 
of their cycle frequencies for orders 2 and 4 [4, 5]. 

In this paper, we focus on the simpler problem of least-squares estimation of the kernels {/i,,(-)} 
and {</«(•)} for a given finite-duration data set consisting of a SOI, a SNOI, and noise. A discrete- 
time version of the nonlinear system (3) is given by 

y(t) = E Y^h^xit-uy2 i*27r?7( + E Y, 9«(aM' ~ "i W ~ "iW ~ *3'e i2rat (4) 



A computer study was conducted to determine the filter coefficients hn(-) and ga(-) given a data set 

x(t) consisting of a SOI s(t) that is corrupted by an interferer i(t) (signal not of interest [SNOI]) 
and white Gaussian noise n(t): x(t) = s(t) + i(t) + n(t). Because of the rather severe computational 
burden associated with estimation of a set of multidimensional functions, it is necessary to limit the 
domain over which the ga(-) are to be estimated. It is also of some practical interest to determine the 
performance that can be attributed to these limited-domain portions of the functions gQ(-) because 
this might lead to computationally simpler LPC filters that still yield acceptable performance. 

To this end, consider (4) with the sum over ui and u2 restricted to the sets Ua: 

y(t) = E 
i 

+E 

J2 hv(u)x(t - u)ei2^1 

53      <x(t-ui)x(t-u2) 
(ui,U2)&Ua    V 

Yl9a(u)x(t-n3)e
i: (5) 

From this formulation, it is clear that the LPC system can be specified entirely in terms of one- 
dimensional filters, that is, in terms of one-dimensional sections of the three-dimensional functions 
ga(-). Thus, we seek the values of ga{-) for various values of {uu u2). For each value of a, each fixed 
pair (uuu2) € Ua is said to result in a distinct path in the LPC structure. The remaining questions 
concern'the choice of the elements of {??},{<*}, and Ua such that the resulting paths contribute 
maximally to the quality of the output of the LPC structure. This can be done by examining the 
correlation between the cubic paths of the LPC structure with the SOI. The choices of Ua should 
be made such that this correlation is largest. Thus, we should choose the lag pairs such that the 
fourth-order moment corresponding to the SOI is largest. In the case of duobinary signals, the 

CTMFs peak for r = o. 

4     Computer Simulations 

MATLAB was used to solve the following least-squares problem 

min f [y(t) - s(t)]2 , (6) 

where y(t) is the output of the LPC filter (5) that with input x(t) and T is the data-record length, 
for various values of {??}, {a}, Ua, and the filter-path lengths. The SOI s(t) (and the SNOI i(t)) is 
a duobinary-coded pulse-amplitude modulated signal, which is defined by 

,,       r u,    T^        pm     f W + e-^7»),   |/|<1/2T0 s(t)=   E   amp(t + mT0 + t0),       F(/) = <  ^ j/j > 1/2T0, 
m=—oo ^ 

where P(f) is the Fourier transform of the pulse p(t), {am} is a random binary symbol sequence, 
and t0 is a timing offset. The noise n(t) is white and Gaussian with power in the receiver band that 
is 20dB below the total SOI power. None of the signals s(t),i(t), or n(t) exhibit SOCS, but both 
s{t) and i(t) exhibit fourth-order cyclostationarity at their symbol rates, which are 1/T0 and 1/Ti, 
respectively. In all the simulations, the SOI and SNOI power levels are equal. 

Two cochannel interferences are considered: wideband (7\ = 11) and narrowband (7\ = 44). 
Minimum mean-squared errors (MSEs) for the wideband interferer are shown in Table 1 for {77} = 
{0,1/To} and several choices of {a}.   Zero and the symbol-rate cycle frequencies of the SOI are 



Case M 
o 

0,±l/To 
0,±1/T0 

0,±1/T0 

0,±1/T0 

0,±1/T0 

{a} 

{} 

±l/To 
0,±1/T0 

0, ±1/70,^1/^ 
0,±l/To,±l/Tu±(l/T0- l/7\) 

«1,«2 

(0,0) 
(0,0) 
(0,0) 
(0,0) 
(0,0) 

No. of Paths 

_1_ 

5 

10 

MSE 

0.88 
0.65 
0.61 
0.55 
0.47 
0.36 

Table 1: Estimation errors for an LPC FRESH filter: wideband interferer (see text). 

Case M {a} «1,«2 No. of Paths MSE 

Filter Length = 32 

1 0 {} — 1 0.44 

2 0 0 (0,0),(0,1),(0,2) 4 0.39 

3 0 ±1/T0 (0,0), (0,1), (0,2) 7 0.38 

4 0 0,±1/T0 (0,0), (0,1), (0,2) 10 0.33 

Filter Length = 64 

5 0 {} — 1 0.32 

6 0 0 (0,0), (0,1) 3 0.27 

7 0 ±1/T0 (0,0),(0,1) 5 0.25 

8 0 0,±1/T0 (0,0), (0,1) 7 0.20 

9 0 {} — 1 0.32 

10 0,±1/T0 0 (0,0), (0,1) 5 0.26 

11 0,±1/T0 ±1/T„ (0,0),(0,1) 7 0.23 

12 0,±1/T0 0,±1/T0 (0,0), (0,1) 9 0.19 

Table 2: Estimation errors for an LPC FRESH filter: narrowband interferer (see text). 

assumed to be the most important frequency shifts, but substantial improvements would likely 
occur with the addition of more frequency shifts into both the linear and cubic paths. The best 
performance for a wideband SNOI is Case 6, which corresponds to a reduction in MSE of 60% with 
respect to the LTI LPC system (Case 1). 

Similar results are shown for the narrowband interferer in Table 2. For this SNOI, we assume 
that the SNOI is stationary, and so we do not include its cycle frequencies in the linear or cubic 
paths. However, the performance of the method would increase if these were taken into account. 
The best performance for a narrowband SNOI is Case 12, which corresponds to a reduction in MSE 
of 41% with respect to the LTI LPC system (Case 5). 

5    Conclusions 
The general LPC system is difficult to analyze and simulate, so only suboptimal computationally 
simpler versions of the general system have been studied so far. These simpler systems are character- 



ized by the number of linear and cubic paths from the input to the output. The mean-squared-error 
in the estimate of a signal corrupted by cochannel interference, obtained by a least-squares tech- 
nique, is shown to decrease with an increase in the total number of paths used. The results of 
this initial study suggest that the LPC filter structure holds some promise for removing cochannel 
interference from a bandwidth-efficient signal. An important theoretical result to be obtained m the 
future is the solution of the minimum-mean-squared-error design equations that specify the system 
parameters. A practical problem to be solved is finding rules-of-thumb for choosing good subsets 

of the system parameters. 
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